Delivering in situ-gelling hydrogels for ophthalmic drug therapies using a microinjection device

Scott B. Campbell,* Jun Yang,* Ben Muirhead,† Heather Sheardown,* P. Ravi Selvaganapathy,* and Todd Hoare*

*Department of Chemical Engineering, †Department of Mechanical Engineering, McMaster University, 1280 Main St. W, Hamilton, Ontario, Canada L8S 4L7
Phone: 1-905-525-9140 ext. 24701 | E-mail: hoaretr@mcmaster.ca | Website: http://hoarelab.mcmaster.ca

Introduction

The primary causes of vision loss in developed nations are related to diseases of the posterior eye (AMD, diabetic retinopathy, posterior uveitis, retinitis due to glaucoma, etc.).1,2 However, this is a particularly difficult target tissue due to anatomic and physiologic limitations, resulting in few intravitreal treatment options being available. Intravitreal injections have been the preferred option, as they are facile, direct method of delivering therapeutic or diagnostic systems.

However, in order to maintain therapeutic levels frequent injections may be required which greatly increases the risk of complications over time and is inconvenient and uncomfortable for the patient. We have developed injectable, degradable hydrogel-based materials for ophthalmic applications that could prolong drug release and have highly adjustable properties (swelling, refractive index, gelation time, and API uptake/release).

These materials have also shown promising in vitro results in many cases, but assessing their in vivo characteristics is difficult which requires injections in the range of 1 – 5 µL (and up to 10 µL for humans). The hydrogel materials are traditionally prepared with a double-barrel syringe, which has no volume control for this size range. Furthermore, single component µL-scale syringes cannot be used because these materials react and gel much too quickly for such devices. In fact, there are no devices that can effectively mix and precisely inject small volumes of two reactive polymer solutions. This project involves the development of a microinjection device for two reactive polymer solutions that could be useful for ophthalmic applications.

Results

The design

Two separate inlets connect to a mixing channel with herringbone grooves1 to promote mixing.

The mixing channel leads to a volume control reservoir with a one-way valve.

Another inlet in the volume control region allows for the material in the volume control region to be pushed through the outlet capillary.

Device manufacture

Each device is made of PDMS.

• Fabricated from a single mould before bonding to glass.

• Outlet silicon capillary is attached after bonding.

Moulds are fabricated using a 3D printer.

• Facile, rapid design modification

• Precise control volume dimensions (0.5 – 1000 µL).

Mixing/injection studies

Mixing studies performed with initial prototypes.

• Polymer solution mixing greatly enhanced by herringbone grooves

• Near-complete mixing 17.5 mm in

FITC-labelled polymers ejected by 10 µL PBS buffer.

2 µL hydrogel droplets were pumped out with no polymer residues left in the reservoir.

• Laminar flow prevents material mixing

Volume control

• Volume control was assessed by injecting hydrogel droplets into paraffin.

• Relatively spherical droplets formed, analyzed with ImageJ.

• 5.2 µL control volume ejects 4.3 ± 0.8 µL.

• Successfully injected a range of different hydrogel combinations

• A wide variety of gelation times (30 seconds – 5 minutes).

Volume control

In vitro studies

• Injected long-chain, protein-repellent, fluorescently-labelled poly(ethylene glycol methacrylate) (POEGMA) hydrogels into the vitreous humour of anaesthetized rats.

• Getting the timing of the process is essential.

• Anaesthesiaing (making sure that the rat doesn’t wake up/blinks during process).

• Forming a visible hole in the sclera (via pre-coating the needle in Nile Blue A).

• Priming the injector.

• Putting the capillary of the injector through the pre-fabricated hole and injecting

• Successfully injected 5 – 10 µL of 11.25% fluorescent POEGMA hydrogels into 5 rats.

• In the vitreous humour, 1 in the choroid (tissue in between the sclera and the retina).

• In the choroidal case, hydrogel formed within the needle track.

• No increase in intraocular pressure observed and the rats retained their sight.

• No fluorescence observed after 2 days.

• Gel may have not formed, was rapidly degraded, or the fluorescent tag was photo-bleached → albino rats.

• Prior to histology (2 weeks post-injection), small, opaque gel-like materials were observed in the injected eyes (and not in the controls).

• Initial histology shows that injected eyes appear similar to controls.

Conclusions/Future work

Progress thus far

• Designed a device to inject in situ crosslinking hydrogels in the eye in controlled volumes <10 µL for in vivo experiments.

• The device is able to mix the two reactive polymers evenly and inject a controlled volume from blunt capillaries (33G equivalent) in vivo.

• First time in situ reactive/crosslinking hydrogels injected into animal eyes in vivo.

Future work

• Complete histology to confirm existence and biocompatibility of these hydrogels in the eye.

• Perform further injections in non-albino rats to see if fluorescence can be maintained.

• Attempt to show fluorescent drug release from these injected hydrogels in vivo.

Acknowledgements and References

1. Scott B. Campbell,∗ Jun Yang,∗ Ben Muirhead,† Heather Sheardown,∗ P. Ravi Selvaganapathy,∗ and Todd Hoare∗
2. From our perspective
3. From the surgeon’s perspective
4. Current vitreal injections
5. In vivo studies
6. Results
7. Conclusions/Future work